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Numerical calculation of some of this class of systematic errors has been done. This note |
studies the symmetry properties of these effects. Ref. 1 discusses the second order effect of local
non-cancellation of @, in the presence of a local longitudinal magnetic field which are spacially
out of phase. In this note I study the symmetry of this error via the simple process of rotation by ¢
about the'y axis followed by rotation of & about the z axis:

X =XCoS@ + zsing

Z =zcosp —xsing

X =xcosf + ysiné_
y =ycos@ —xsind

The sign of ¢ and © is reversed, and the procedure is repeated. The problem arises because
rotations do not commute. Table 1 summaries the results for the case when the signs of p and 8
were alternated 10° times each.

P 9 initial x | initialy | initialz | finalx | finaly | finalz
+1073 +1073 |0 0 1 0 +0.05 0.9988
F102 | F102 |0 0 1 : 0 +0.05 0.9988
F107° | +1073 |0 0 1 0 -0.05 0.9988
+107% | 71072 |0 0 1 0 -0.05 0.9988

The first two entries correspond to rotations by:

+o +0 —p -6... (1)
- -0 4+ +0... (2

which give the same result: a final positive y component. One can see that 2) is the same pattern
as 1), just displaced in time. From ref. 1: “It is amazing that the spin rotates around the radial, not
the longitudinal axis as a result of the combination of the oscillating rotations around the
longitudinal axis and the oscillating rotations around the vertical axis”.

Fig. 1 shows what happens step by step. Step 0 is the initial state: x=y=0,z=1.
First we rotate about the y axis, so x increases by ¢z ~ ¢, but y does not change. Then we rotate
about the z axis, so y increases by 0 x ~ © @, and x decreases by a very small amount ~ 6%/2. Then,
we rotate about the -y axis, so x comes back close to zero, and y remains the same. Then we
rotate about the -z axis, and both x and y change by a very small amount. Then we repeat. The y
component keeps growing. )
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Fig. 1. Rotations about the y and z axis by 0.01. The scale for the x component is on. the left, and
the vy is on the right. The z component remains close to 1.

The last two entries in Table I correspond to rotations by :

- +6’ +¢ -6... 3)
+p -0 - +0... @

which give a final negative y component. 1) corresponds to a different physical phase of ¢ and 6
compared to 3). Fig. 2 shows one of these two situations, assuming the E field is “perfect”, ie.
completely uniform around the ring. The other physical situation occurs when |By| too low and
too high are interchanged.
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Fig. 2. This combination of magnet ilts and incorrect magnitudes causes a Berry’s phase
systematic error [1]. ‘

Tlie tilted magnet gives a longitudinal component of the magnetic field. By Ampere’s law, if
there are no enclosed currents, the net longitudinal component of the magnetic field is zero
around the ring. If the magnitude of B is incorrect in the tilted magnets, it doesn’t matter for the
Berry’s phase systematic error, as the ¢ and 6 rotations then happen simultaneously. Now let’s
consider what happens when we inject clockwise and counter-clockwise.
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Fig. 3. a) Clock-wise and b) counter-clockwise.

For both cw and ccw the spin gets rotated radially inward when the magnetic field is too high

compared to the electric field (for positive anomaly). For clockwise, the spin next gets rotated

upward by the longitudinal magnetic field in Fig. 3a: dS/dt = pxB. For counter-clockwise, the

spin also gets rotated upward upward by the longitudinal magnetic field in Fig. 3b. This is

. opposite s etry.a , ie. if the spin gets rotated upward by the edm when the beam
is going cw, it gets rotated downward when the beam is going ccw: dS/dt = d x (BxB). This is in

agreement with ref. 2; it’s always good to check signs. : :

One can also get an effect if the beam is tog hlgh for example if the quadrupole magnets are_
higher than the dipole magnets, so that the frmge ﬁeld has an average positive longitudinal
component as the beam enters the mg magnet, and an average negative longitudinal component as the
beam leaves the magnet. This gives rotations s about:

+6 +ga -0 +0 —¢p -0...
Running the program on this confizuration gaveno effect (for obvious symmetry reasons).

Another Berry’s phase systematic error occurs if the average E and B fields are not matched
in addition to local longitudinal magnetic fields. Fig. 3 shows the case for initial x =-1, y=z =0,
1,500 operations of ¢ = 0.001 and 6 = +:0.001. The final rotation about the y ax15 is 1.5 radians.
At the beginning, x = -1, so rotation about the z axis by £107 gives y =0 or 10™. The average is 5
%10, At the end, x is small and y is small, so rotations about the z axis gives very little change.
The average is still 5 x10, so there is no change in the average. However, in reality, a golarnnetex
measures the spin at one location in the storage ring. Hence, it could see either 0 or 10~ at early
times and 5x10™ at late times, which is an observational systematic error. This argues for many
polarimeters around the ring.
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Fig. 3. 1,500 operations of ¢ = 0.001 and § = 20.001. y scale is on the right.
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